

POLITECNICO DI MILANO

Piazza Leonardo da Vinci, 32 - 20133 Milano Tel. +39.02.2399.1 - http://www.polimi.it

Advanced Course on High Resolution Electronic Measurements in Nano-Bio Science

Current Measurements in Bioscience Examples of Applications

Marco Carminati

June 7th 2023

dal 1863. Tecnologia, Creatività, Cultura

- Introduction
 - Direct electrical sensing in Biology
- Current detection requirements in bio-applications:
 - Patch-clamp neural current recording
 - Planar setup improvement
 - Exocytotic molecular detection
 - Redox cycling
 - Stem-cells application
 - Amperometric glucose sensors
 - Nanopores

Cross-Disciplinary Convergence

The context **MICRO ELECTRONICS CHEMISTRY**

NANO TECHNOLOGY BIOLOGY

Common scientific and technological effort towards the realization of nano-bio-chemical devices

Sensing at the Interface

Use the ionic liquid as a top conformal conductive electrode

Probing charge transfer and induction at the interface affected by the presence of the analyte

Affinity Biosensors

1

4

Y Two Possible Approaches

- 1. The electrochemical current brings direct information about the biological entity (cells):
 - Ion Channels
 - Exocytosis of redox biomolecules

- 2. The electrochemical current is a tool to detect the binding event (molecules):
 - Glucose sensor

From Micro to Nano

The scaling of the electrode fabrication ability below the micrometer enables a direct size compatibility with cells and macromolecules

Microelectrodes: Spatial Resolution

Sub-micrometric electrodes for electrophysiology:

W.-Z. Wu et al., Monitoring Dopamine Release from Single Living Vesicles with Nanoelectrodes, *J. Am. Chem. Soc.*, 2005, *1*27 (25), pp 8914–8915

Living Cell

C.Amatore, et al. Electrochemical Monitoring of Single Cell Secretion, Chem. Rev. 2008, 108, 2585–2621
A.Ewing et al. Spatially and Temporally Resolved Single-Cell Exocytosis, Anal. Chem. 2008, 80, 1394-1400

POLITECNICO DI MILANO

Direct Electrical Interface with Cells

Biological investigation mainly relies on optical microscopy

Advantages of direct electrical sensing:

- Label-free (save time and reagents, non intrusive)
- Quantitative
- Integration with microelectronics
- Miniaturization and portability
- Some cells generate electrical signals

Historical landmarks of electrophysiology:

- 1791 Galvani "De viribus electricitatis in motu musculari"
- 1952 Hodgkin Huxley action potential model (Nobel 1963)
- 1976 Patch-Clamp (by Neher & Sakmann, Nobel 1991)

Electrogenic Cells

Electrical signals within cells are driven by ionic gradients:

- Pumps (against diffusion, need energy)
- Ion channels (valves)

- Neurons
- Heart, muscles

POLITECNICO DI MILANO

Complementary Sensing Approaches

Non-invasive external electrical sensing of electrogenic activity:

- Voltage
- **Current** (Patch-Clamp)
- Chemical detection of released molecules

Common trend to miniaturization, parallelization and integration

Voltage Sensing

Intracellular signal

CMOS platforms:

- Fromherz
- Hierlemann
- Martinoia

Life's Transistors: Ion Channels

POLITECNICO DI MILANO

The Patch-Clamp

POLITECNICO DI MILANO

Current Recording

Significant biological interest in improving the current resolution:

ms timescale

- Na, K channels 1-10pA Ca, Cl channels 0.1pA
- Pumps (100e⁻/s) 0.016fA

F. Sigworth & K. Klemic, IEEE Trans. Nanobioscience 4 2005

POLITECNICO DI MILANO

Commercial State-of-the-Art

Axopatch 200B

Axon (Molecular Dev.)

Cooled headstage (-15°C)

Specs:

- JFET, $I_{bias} = 1pA$
- Gain = 1mV/pA
- BW = 140 kHz
- 60fA_{rms} over 5kHz
- $C_f = 1pF$
- $T_{reset} = 50 \mu s$

POLITECNICO DI MILANO

Achievable Performace

Experienced user:

single-channel event

POLITECNICO DI MILANO

How to Improve the Performance

The dominating noise terms are due to the **setup**:

- $C_m = ~0.01 pF/\mu m^2$
- C_e = 1-10pF
- $R_L = \sim G\Omega$ (seal) $C_a = 1-10 pF$
 - $R_{S} = \sim M\Omega$ (solution) F. Sigworth & K. Klemic, *IEEE Trans. Nanobioscience* **4** 2005

Improving the Setup

POLITECNICO DI MILANO

Whole Live Cell Odorant Sensor

The Synapse

Chemical mediation: 5.10¹⁴ synapses in the human brain

Exocytosis: extra-cellular release of small molecules in vesicles

Amperometric Detection of Molecules

Chemical messengers:

• Dopamine, adrenaline etc..

Current tracking:

- 5.10⁴ molecules in a vesicle
- 10fC released in 1ms → ~10pA

M. Wightman, Science 17 2006

POLITECNICO DI MILANO

V Techniques Combination

Detection of Single Exocytotic Events

Amperometric recording:

Specs: 1pA Resolution @ <1ms

At the **limits** achievable with a standard transimpedance amplifier:

- $R_f = 200 M \Omega$
- 0.2pF stray capacitance

BW = 4kHz

Intrinsic Amplification: Redox Cycling

POLITECNICO DI MILANO

The Bipotentiostat Configuration

marco1.carminati@polimi.it

POLITECNICO DI MILANO

Bipotentiostat for Redox Cycling

With catecholamines the achievable gain is ~10

Applications

High-sensitivity tracking of neurotransmitter exocytosis:

- Investigate fundamental biological mechanisms (brain)
- Addressing neurodegenerative diseases
- Early detection of stem-cell differentiation

Integrated Platform

- Optical/electrical detection
- Microfluidics
- Intra/extra cellular recording
- Automatic
- Highly parallel

Sub-Cellular Resolution

High-resolution spatio-temporal tracking of single exocytotic events:

The Problem of Interferences

Similar neurotransmitters (similar molecules, similar CV) may have very different biological function \rightarrow selectivity issue:

Solution: Fast Cyclic Voltammetry

Extension of Amperometry

Service Amperometric Biosensor

If the catalysis of the target molecule involves an electron transfer it can be detected with amperometry

- The current is proportional to the concentration
- The process can be less efficient
- Enzymes are often immobilized on electrodes

Enzymatic Reactions for Glucose

* Glucose oxidase (GOD) is commonly used since it fairly stable
 & requires no cofactors or coenzymes

Commercial Glucose Sensors

Commercial Biosensor System

POLITECNICO DI MILANO

Summary: Paradigm Shifting

To address the measurement challenges set by micro- and nanoscale biological systems (sup-pA and sub-ms resolution) macroscopic bench-top instruments have to be replaced by miniaturized integrated systems

- size compatibly → sub-micrometric electrodes
- radical reduction of parasitics
- parallelization (multichannel) } CMOS
- portability, low-cost

Nanopores

 Γ -stection of the obstruction of the pore when a molecule passes:

The performance of current amplifier are crucial!

The Coulter Counter

POLITECNICO DI MILANO

Different Pose-Based Approaches

Explosion of Nanopore Technology

Mimicking natural detection scaling down the pore at nanometers:

Natural

Immobilization and stability issues.

Fabrication with ion (FIB) or electron beams (TEM).

Martin, *Science* **317** 2007

marco1.carminati@polimi.it

Dekker, Nature Nanotech. 2 2007

The Dream: DNA Sequencing

Simple

- Personal / Point-of-Care
- Low-cost
- Automatic
- Fast

GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATA

Now It's a Product

CAN YOU REALLY SEQUENCE DNA WITH A USB THUMB DRIVE?

Can this USB stick change biology research? Photo: Oxford Nanopore

POLITECNICO DI MILANO

V First DNA Translocation Experiments

Encouraging Results

Capability to discriminate different monobase sequences:

Specifications: Current Modulation

Pore blockade produces **current modulation** of:

- **100pA** for α-hemolysin
- 300pA for MspA
- **1-4nA** for solid-state pores

depens on: salt concentration, pore diameter, molecule type

Tailor size:

Specifications: Translocation Speed

DNA (-q) translocation is controlled by **electrophoresis**

Speed depends on the voltage V and on the polymer length (for short chains) and on the kind of pore, typically:

- **1** bp/1µs for α -hemolysin
- 25 bp/1µs for solid-state pores

A. Meller et al., PRL 86 2001

POLITECNICO DI MILANO

Pushing the Electronics Limits

Solution: Take More Time

To have ~10pA resolution, the BW is reduced to the kHz range Traslocation speed **needs to be reduced**

Approaches To Slow Down DNA

POLITECNICO DI MILANO

Enzymatic DNA Control

Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision

Gerald M Cherf, Kate R Lieberman, Hytham Rashid, Christopher E Lam, Kevin Karplus & Mark Akeson

Impressive, but in the opposite to high-throughput analysis

A Different Approach: Tunnelling

How to Fabricate Tunnel Electrodes 1

Platinum: Electron Beam-Induced Deposition

POLITECNICO DI MILANO

How to Fabricate Tunnel Electrodes 2

Carbon Nanowire

P. Spinney et al., Nanotechnology 23 2012

marco1.carminati@polimi.it

POLITECNICO DI MILANO

Simultaneous Detection

Correlation between ionic current blockade and tunnelling signal

POLITECNICO DI MILANO

Noise Analysis: Device

Noise Analysis: Device Parasitics

Expected exposed area:

$$C_m \approx \epsilon_{SiN} \frac{L_m \times L_m}{t} = 8.25 pF$$

Due to conductive Si substrate, much larger capacitance:

$$C_{stray} \approx \epsilon_{SiN} \frac{L_g \times L_g}{t} = 3.3nF \longrightarrow B_{amplifier} \approx \left[\frac{3(\Delta I/SNR)^2}{S_v(2\pi C_{in})^2}\right]^{\frac{1}{3}} = 312kHz$$

1

POLITECNICO DI MILANO

Example of Circuit Design

Integrator-Differentiator Discrete components C_{fd} C_{feed} implementation for R_{fd} pores with C_{strav} in R_{feed} ₩ ۸۸۸ V_{dc} C_{d} the nF range Vout U2 U1 R_{d} Cstray ٨M 1.5nV/sqrt(HZ), 70pF 1pF +12V C2 Level Shifter 100pF 470kΩ Manual ᆊ \sim Trim Offset 2kΩ R3 Trim $\langle \Lambda \Lambda \rangle$ R1 C1 50Ω 1MΩ 1pF ≲300Ω 100MΩ 300Ω OP1 1kΩ R2 OP2 $\wedge \wedge$ +6V 50Ω Output OP3 Voltage AD829 THS4631 Current AD817 Electrode 2SK146 Input ^C Bias Bias Second Stage: Third Stage: First Stage: Current Zero-Pole Compensator Output Buffer Low-Noise Transimpedance -12V

marco1.carminati@polimi.it

POLITECNICO DI MILANO

System Architecture and Results

Integrated ASIC for Nanopore Sensing

CMOS solution:

- Multichannel
- Smaller C_{input}
- Near to the electrodes

- Switched integrator
- Sigma-delta ADC

• 150fA_{rms} @ 1kHz

Significant performance improvement moving from an external electrode to an **on-chip electrode**!

Integrated nanopore sensing platform with sub-microsecond temporal resolution

Jacob K Rosenstein¹, Meni Wanunu^{2,3}, Christopher A Merchant³, Marija Drndic³ & Kenneth L Shepard¹

¹Department of Electrical Engineering, Columbia University, New York, New York, USA. ²Departments of Physics and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA. ³Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Correspondence should be addressed to K.L.S. (shepard@ee.columbia.edu) or J.K.R. (jrosenstein@ee.columbia.edu).

RECEIVED 11 NOVEMBER 2011; ACCEPTED 23 FEBRUARY 2012; PUBLISHED ONLINE 18 MARCH 2012; DOI:10.1038/NMETH.1932

NATURE METHODS | ADVANCE ONLINE PUBLICATION | 1

Device and Setup Optimization

marco1.carminati@polimi.it

POLITECNICO DI MILANO

Alchemy: Turning Aluminum in Silver

Chemical modification of the **pad** to serve as reference electrode:

Very useful post-CMOS electrochemical processing: no masks! Although, mask used to open extra 300µm SU-8 insulation layer

Careful Reduction of Parasitics

Device level: Circuit level:

Thick insulation State-of-the-art low-noise analog front-end Small area

POLITECNICO DI MILANO

Achieved Significant Cap Reduction

	C _I amplifier input	$C_{ m F}$ amplifier feedback	C _W wiring/ interconnect/ fluidics	C _M solid-state nanopore chip/membrane	Total $C_{\mathrm{I}}+C_{\mathrm{F}}+C_{\mathrm{W}}+C_{\mathrm{M}}$
Axopatch 200B (early solid-state pores ³)				300 pF	320 pF
Axopatch 200B (lower-capacitance solid-state pores ^{4,5})	15 pF	1 pF	4 pF	10 pF	30 pF
This work (CNP, "PoreA")	1 pF	0.15 pF	0.25 pF	6 pF	7.4 pF
				1	

	Area	Thickness	Relative Dielectric Constant (ε _r)	Capacitance (C _M)
Ultra-thin SiN	$(500 \text{ nm})^2 = 2.5 \text{x} 10^{-7} \text{ mm}^2$	10 nm	7	0.002 pF
SiN membrane	$(40 \ \mu m)^2 = 0.0016 \ mm^2$	25 nm	7	4 pF
SiN-SiO ₂ exposed to <i>trans</i> chamber	$\pi/4 \text{ x} (450 \ \mu\text{m})^2 = 0.16 \ \text{mm}^2$	5 µm	4	1.1 pF
Silicone-SiN-SiO ₂	$(5 \mathrm{mm})^2 = 25 \mathrm{mm}^2$	1 mm	4	0.9 pF
			TOTAL	6 pF

POLITECNICO DI MILANO

Nesults: Characterization

marco1.carminati@polimi.it

POLITECNICO DI MILANO

Results: Fast DNA Detection

High speed (short 25bp dsDNA)

High resolution (intra-event dynamics)

POLITECNICO DI MILANO

68

Bibliography - Reviews

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Physics of Life Reviews 9 (2012) 125-158

www.elsevier.com/locate/plrev

Review

Nanopores: A journey towards DNA sequencing

Meni Wanunu

nature nanotechnology

PUBLISHED ONLINE: 18 SEPTEMBER 2011 | DOI: 10.1038/NNANO.2011.129

Nanopore sensors for nucleic acid analysis

Bala Murali Venkatesan^{1,2} and Rashid Bashir^{1,2,3*}